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Given the highly empirical nature of research in cloud

computing, networked systems, and related fields, testbeds

play an important role in the research ecosystem. In this

paper, we cover one such facility, CloudLab, which supports

systems research by providing raw access to programmable

hardware, enabling research at large scales, and creating a

shared platform for repeatable research.

We present our experiences designing CloudLab and oper-

ating it for four years, serving nearly 4,000 users who have

run over 79,000 experiments on 2,250 servers, switches, and

other pieces of datacenter equipment. From this experience,

we draw lessons organized around two themes. The first set

comes from analysis of data regarding the use of CloudLab:

how users interact with it, what they use it for, and the impli-

cations for facility design and operation. Our second set of

lessons comes from looking at the ways that algorithms used

“under the hood,” such as resource allocation, have important—

and sometimes unexpected—effects on user experience and

behavior. These lessons can be of value to the designers and

operators of IaaS facilities in general, systems testbeds in

particular, and users who have a stake in understanding how

these systems are built.

1 Introduction

CloudLab [31] is a testbed for research and education in cloud

computing. It provides more control, visibility, and perfor-

mance isolation than a typical cloud environment, enabling it

to support work on cloud architectures, distributed systems,

and applications. Initially deployed in 2014, CloudLab is now

heavily used by the research community, supporting nearly

4,000 users who have worked on 750 projects and run over

79,000 experiments.

On the surface, CloudLab acts like a provider of cloud com-

puting resources: users request on-demand resources, config-

ure them with software stacks of their choice, and perform

experiments. Much like a cloud, the testbed simplifies many

of the procedures surrounding access to resources, including

selection of hardware configuration, creation of custom im-

ages, automation for software installation and configuration,

and more. CloudLab staff take care of the construction, main-

tenance, operation, etc. of the facility, letting users focus on

their research. CloudLab gives the benefits of economies of

scale and provides a common environment for repeatability.

CloudLab differs significantly from a cloud, however, in

that its goal is not only to allow users to build applications,

but entire clouds, from the “bare metal” up. To do so, it

must give users unmediated “raw” access to hardware. It

places great importance on the ability to run fully observable

and repeatable experiments. As a result, users are provided

with the means not only to use but also to see, instrument,

monitor, and modify all levels of investigated cloud stacks and

applications, including virtualization, networking, storage,

and management abstractions. Because of this focus on low-

level access, CloudLab has been able to support a range of

research that cannot be conducted on traditional clouds.

As we have operated CloudLab, we have found that, to

a greater extent than expected, “behind the scenes” algo-

rithms have had a profound impact on how the facility is

used and what it can be used for. CloudLab runs a number

of unique, custom-built services that support this vision and

keep the testbed operational. This includes a resource mapper,

constraint system, scheduler, and provisioner, among others.

CloudLab has had to make several trade-offs between general-

purpose algorithms that continue to work well as the system

evolves, and more tailored ones that provide a smoother user

experience. The right choices for many of these trade-offs

were not apparent during the design of the facility, and re-

quired experience from the operation of the facility to resolve.

The primary goal of this paper is to provide the architects

of large, complex facilities (not only testbeds, but other IaaS-

type facilities as well) with lessons from CloudLab’s design

choices and operational experiences. CloudLab is one of

many facilities that serve the research community in various

capacities [8, 6, 16, 33, 21, 34, 31, 35], and we aim to general-

ize the lessons from this specific facility. As a secondary goal,

we hope that users of these facilities benefit from a closer

look into the way they are designed and operated. With these

goals in mind, this paper makes two contributions:

• In Section 2, we describe the CloudLab facility as it



has been built and analyze its basic usage patterns and

the research conducted on it. This analysis, and the

dataset that goes with it, represent a contribution to the

community understanding of the practical operation

of IaaS-type facilities.

• In Section 3, we analyze specific design choices using

data from the operational system, looking at some of the

trade-offs inherent in the facility’s design. This analysis

yields important insights about how these choices af-

fect user behavior and point to design principles for

other facilities.

Sections 4 and 5 cover related work and conclude.

2 Development and Use of CloudLab

We begin with background on CloudLab; our goal is not a

complete summary of its goals, design, and deployment, but

to provide sufficient context for the analyses that follow. We

then examine usage patterns: how the use of the facility has

evolved over time, the availability of resources, and the types

of research that are conducted on it. From these analyses, we

draw lessons about user behavior and look at the implications

for the design of testbeds and IaaS facilities in general.

2.1 The Deployed CloudLab Facility

The primary CloudLab hardware is hosted at three sites: the

University of Utah, Clemson University, and the University

of Wisconsin–Madison. Though every site supports a wide

variety of hardware-agnostic experimentation, each site spe-

cializes in a different area of research. Wisconsin’s hardware

is designed for networking and storage work, Clemson’s for

analytics and high-performance workloads, and Utah’s for

scale-out workloads. This equipment has come online in

batches as CloudLab has been built out and evolved in re-

sponse to user demand. Identical nodes in the same batch

are all labeled with the same hardware type to help users

request nodes with specific properties and to enable experi-

ments to be repeated on the same types of resources. Since

its initial public availability in December 2014, CloudLab

has added devices such as programmable Ethernet switches,

GPUs, Infiniband, and high-disk-count servers in response

to user feedback. A full description of CloudLab’s hardware

can be found in its manual [36].

In addition to the hardware that it owns, CloudLab is fed-

erated [30, 7] with several other facilities, including Emu-

lab [39] and Apt [32]. This brings the total number of servers

available to CloudLab users up to about 2,250, and for the

rest of the paper we include these resources in our analysis

and discussion of CloudLab’s hardware.

CloudLab is operated using software developed in-house

specifically for running research testbeds: its control soft-

ware is directly descended from software developed for the

Emulab [39], GENI [25, 32], and Apt [32] testbeds. We

have extended this software to better support experimentation

on clouds and have made a number of improvements (such

as those documented in Section 3) based on our experience

running the facility.

CloudLab provides access to its devices at the lowest layer

possible with a minimum of virtualization and abstraction

between users and hardware. The reason for this is twofold.

First, CloudLab’s goal is to support research that is not pos-

sible on public (or typical private) clouds: it allows users

to modify aspects of the software stack that would be fixed

on those platforms, such as the storage, virtualization, and

networking layers. Second, this supports more repeatable

experimentation than facilities that virtualize and share their

resources, as it provides strong performance isolation be-

tween tenants, factoring out the unpredictable “background

noise” that makes it harder to draw sound, scientific con-

clusions. CloudLab takes pains to ensure that all servers of

the same hardware type have comparable performance: in

prior work [22], we have developed techniques for identifying

servers whose performance is not statistically representative

of the whole, and we exclude such servers from the popula-

tion seen by experimenters. The facility takes the principle of

low-level access beyond just servers and also provides “raw”

access to other types of hardware such as programmable Eth-

ernet switches [37] and servers with many drives from which

users can build their own SANs.

Experiments in CloudLab are instances of profiles. A pro-

file contains a description of the hardware resources (servers,

switches, etc.) that the experiment will run on, and the soft-

ware needed to run the experiment (in the form of disk images,

git repositories, and scripts to run). When a profile is in-

stantiated, CloudLab selects available hardware that matches

the profile’s specification and provisions that hardware with

the software and configuration options described in the pro-

file. Every instance of the profile runs on a separate set of

hardware resources, and many instances of the same profile

can run simultaneously. The CloudLab operators provide

standard profiles for popular cloud software stacks, such as

OpenStack [28], as well as bare-metal profiles that load stan-

dard Linux distributions. Users can also create their own pro-

files, which they can share with others. A typical workflow

for creating a new profile involves starting with CloudLab-

provided disk images, installing custom software, and creat-

ing a hardware description meeting the experiment’s needs.

All experiments have an expiration: when they are first cre-

ated, they are set to expire after a few hours. Users can

then request that their experiments be extended to last longer;

short extensions (hours to days) are granted automatically

(assuming resources do not need to be reclaimed to satisfy

reservations), and administrators evaluate requests for longer

periods (weeks to months). When deciding whether to grant

these requests, administrators look at coarse-gained idleness

statistics, such as CPU load and network packet counts, to de-









ments, and workflows. These aspects of the system must be

co-designed, so that users can work with these subsystems

rather than having to fight against them to get work done.

3.1 Resource Mapping

There exist several approaches to the problem of mapping

user requests to physical resources. For instance, commer-

cial clouds do not provide control over this mapping within

selected instance classes; they manage the placement and con-

solidation for effective utilization and hide the details from

the users. In contrast, Chameleon [21], which is designed

as a testbed for repeatable experiments (similar to CloudLab

but serving a different research community), has its users do

the mapping by asking them to specify IDs of the particular

servers they want to use in their requests.

CloudLab takes a unique approach where it recognizes two

aspects in this mapping. It is a constraint-satisfaction problem

in the sense that the user’s request is a specification that must

be satisfied; specifically, it resembles the subgraph isomor-

phism problem [10] in that both the requested and physical

topologies are graphs consisting of servers, switches, etc. It

is also an optimization problem, because the mapping must

be done in a way that maximizes the possibilities for future

mappings: it should avoid using scarce resources unless they

are specifically requested or there is no available alternative.

CloudLab exposes the outcomes of the mapping to the users

and allows them to reuse hardware IDs if necessary.

CloudLab’s mapping algorithm is derived from the one

developed for Emulab [29], and uses simulated annealing

to address this NP-hard problem. The advantage of using a

powerful, general-purpose algorithm is that it enables the

expression of complex constraints and preferences. The

disadvantage, however, is that when a mapping cannot be

found for a request, it can be difficult for users—and even

administrators—to understand why. In CloudLab, we have

had to evolve this system to improve the intelligibility of the

responses that it provides.

The fundamental trade-off exposed here is between a gen-

eral algorithm that makes few assumptions about the facility

(and therefore is easily adaptable to new resources) and a

more specialized algorithm that understands facility seman-

tics and can provide actionable suggestions when a mapping

fails. The general algorithm fundamentally lacks semantic

information about what the user may be trying to accom-

plish and the classes of requests that “make sense” on this

particular testbed. A mapping algorithm more tailored to a

specific use case could embed such information and make

assumptions about user goals.

Our response to this trade-off has been to retain the general

algorithm, but to develop a set of heuristics that turn some

of the more common failure modes into messages that are

easier for users to understand. A major challenge in design-

ing these heuristics is that they must be conservative: that

is, every mapping that would have succeeded without the

heuristic must still succeed. Our experience has been that

it is preferable to build such heuristics around the mapping

algorithm rather than into it. Building conservative checks

into the randomized setting of the mapper itself is extremely

difficult and can easily cause unexpected changes in behav-

ior. It is easier—and more informative for the user—to build

conservative checks as a deterministic wrapper around the

mapper. We now describe some of these checks, which we

have added over time in response to common error patterns

and common questions from users.

In an ideal situation, all mapping errors would be explained

to the user by concise, actionable error messages. In theory,

the universe of possible mapping errors is so vast that not all

have simple explanations. We have found that in practice,

however, it is possible to catch most mapping errors with

heuristics. We now describe the set of heuristics we have

developed over time in response to use patterns and frequent

user questions.

Looking in Table 2 at the last year (L.Y.) of mapping errors,

approximately 84% of all errors are explained by the top 10

error messages, and of that top 10, only 13.5% are ones that

we classify as “unhelpful.” If we look at this as a percentage of

all experiments, only 1.2% of all attempts to start experiments

in the last year have received these four unhelpful mapper

messages.

The top two messages (lines 1 and 2 in the table) together

account for about half of all mapper errors, and they sim-

ply indicate a lack of free nodes (servers or user-controlled

switches) at the current time. The first message indicates that

there are insufficient nodes free right now while the second

says that this would occur in the near future due to the reser-

vation system described later in this section. There is a third

variation on this message (line 7); this is an older version of

line 1, which we updated partway through the year to clarify

its meaning and provide more specific information. Note that

this class of messages are per-type, so experiments that re-

quest, for example, both servers and user-controlled switches

get specific feedback on which is the limitation. The number

of available nodes is reported in order to allow the user to

decide whether they would prefer to request fewer nodes or

to wait until enough nodes become available. When users

request specific nodes, in contrast with asking for any nodes

of a selected type, they receive explicit messages indicating

that those nodes are unavailable (line 10).

Other frequent errors (lines 3, 6, and 8) indicate that there

is some node in the request that cannot map to anything

available. Our heuristics try to report the specific reason,

such as requesting too many physical interfaces, an OS image

that is incompatible with the hardware type, or a specific

feature (such as a GPU add-on). The distinction between

lines 6 and 8 presents an interesting illustration of our use of

heuristics: underneath, the mapper uses the same mechanism

to handle both of these constraints (support for a particular

image is considered a “‘feature”). We found that the raw



Error Message
Helpful

(actionable)

% of

Mapping Errors % of

All Errors

L.Y.

% of

All Experiments

L.Y.L.Y. ALL

1. Resource reservation violation: X nodes of type HW requested, but only Y available X 27.79 14.33 16.07 2.41

2. X nodes of type HW requested, but only Y available nodes of type HW found X 21.86 33.01 12.64 1.89

3. No Possible Mapping for X: Too many links of type Y X 6.64 6.96 3.84 0.58

4. No Connection ✗ 5.22 2.62 3.02 0.45

5. Insufficient Bandwidth ✗ 4.88 7.53 2.82 0.42

6. No Possible Mapping for X: OS ’Y’ does not run on this hardware type X 4.74 3.50 2.74 0.41

7. Not enough nodes because of policy restrictions or existing resource reservations X 4.37 2.18 2.53 0.38

8. No Possible Mapping for X: No physical nodes have feature Y X 3.54 2.40 2.05 0.31

9. Insufficient Nodes: Unexplained ✗ 3.39 2.15 1.96 0.29

10. Fixed physical node X not available. X 2.56 3.15 1.48 0.22

Table 2: Distribution of recorded mapping errors. “ALL” denotes the distribution of all errors recorded since October 20, 2015.

“L.Y.” columns refer to the percentages reported for the last year (starting on August 1, 2017).

message, however, was unhelpful and confusing to users,

so we recognize the specific case of image-related mapping

failures and transform the message into something that the

user can act on: she needs to either pick a different image or

a different hardware type.

Lines 4 and 5 are the error messages that are the least

helpful to users, and they have a similar cause: the mapper

is unable to find a solution that satisfies all links and LANs

with the bandwidths specified in the requests. These error

messages are produced directly by the simulated annealing

portion of the mapper, and it is no coincidence that they are the

hardest to explain. They are highly dependent on the details of

the topology requested by the user and the switch topology at

each CloudLab site. There are many potential actions to take

in response to such failures: change the topology, reduce the

bandwidth requested, try a different CloudLab site, wait for a

different set of physical resources to be free, etc. In essence,

the more degrees of freedom the user has with respect to

reacting to a failure, the harder it is for the facility to guess

which one best addresses the user’s actual goals, and the more

difficult it is to provide a useful message.

3.2 Interactive Topology Design Feedback

Giving users actionable messages when their profiles don’t

map is helpful, but it comes fairly late in the process of experi-

ment design. Our experience has been that users can find even

the “helpful” mapper errors frustrating, as they come after the

user has already invested significant time. A useful analogy

is to compile-time errors and syntax checking in IDEs: com-

piling is complex and slow, and feedback from the editor as

the user writes code, while not perfect, leads to a workflow

with fewer surprise errors. What we discovered was that we

needed the equivalent of realtime syntax checking for net-

work topology design, and our answer to this is CloudLab’s

topology constraint system. The biggest challenge in building

it has been to design a system with a simplified model of the

mapping process that does not produce a specific mapping,

but instead checks whether such a solution should exist; it

must do so quickly enough to run interactively in the browser.

The constraint system is used in two contexts, and has

slightly different goals in each. In the first context, it is in-

voked as part of Jacks: CloudLab’s GUI that gives users a

“drag and drop” interface for constructing profiles. In this

setting, its goal is to assist novice users by disabling UI op-

tions that conflict with their existing choices and to warn

them when the topology they have drawn is unlikely to be

instantiatable. It does not need to admit every possible re-

quest that can be instantiated on CloudLab (there are more

sophisticated interfaces for that), but to provide an assurance

that, if a topology passes at this stage, it is virtually guar-

anteed to succeed in mapping (assuming there are enough

resources free). In the second setting, it is used at the final

stage of profile instantiation, when the user selects which

CloudLab cluster to run their experiment on. Here, it checks

the request against each cluster and disables selection of any

cluster where the request cannot be instantiated. The goal in

this case is the inverse, and we must be more conservative:

We want the constraint system to block instantiation if the

request will definitely fail, but do not want to over-zealously

block instantiation that might succeed.

The described two-phase experiment design is unique to

CloudLab. On the surface, the first phase can be compared

to how responsive web interfaces for clouds—e.g., Ama-

zon EC2’s dashboard and the OpenStack’s Horizon dash-

board [27], hide or disable infeasible configurations. At the

same time, EC2 goes as far as “attaching” storage character-

istics to instance classes (even though networking is actually

what is being customized) when listing the storage optimized

solutions among the feasible configurations. CloudLab’s con-

straint system makes the design process more explicit by offer-

ing interactive control over all components of interconnected

experiment environments. In the second phase, requests act

analogously to HTCondor’s classads [9]. In practice, sys-

tems like HTCondor without interactive design capabilities



make working with complex configurations laborious and

error-prone.

Generating and checking candidates To check con-

straints, we generate a set of candidates which are tested

against a number of groups. A candidate is a set of node

or link resource properties which we check for mutual com-

patibility. A group is a whitelist of acceptable combinations

relating two or more resource properties. For example, a

group might include all allowed combinations of hardware

type and disk image. Our constraint system also supports

wildcards in both candidates (for unspecified resource prop-

erties) and groups (for cases where one resource property is

universally allowed). A candidate passes if it matches all

groups. Our approach uses a Boolean expression in the prod-

uct of sums form: a set of terms containing conditions that

are OR-ed together, with all terms being AND-ed together.

This process is defined in terms of sets and Boolean opera-

tions as follows: for a set of candidates X = {x1,x2, . . . ,xk},

we define an evaluation procedure f (X) that checks all indi-

vidual candidates. We define g(x) for a given configuration

candidate x such that the candidate must match against all

groups (A, B, etc.): g(x) = A(x)∧B(x)∧ . . . For each group,

the candidate must match at least one condition. As an ex-

ample, suppose the following table described the conditions

allowed for each group:

Group relating site, hardware, and type: Group relating hardware and image:

a1(x) ={utah, m510, xen}⊆ x b1(x) ={m400, ubuntu16-64-ARM}⊆ x

a2(x) ={utah, m400, pc}⊆ x b2(x) ={m510, ubuntu16-64-STD}⊆ x

... ...

an(x) ={wisconsin, c220g2, pc}⊆ x bm(x) ={c220g2, fbsd110-64-STD}⊆ x

A(x) = a1(x)∨a2(x)∨ ...∨an(x) B(x) = b1(x)∨b2(x)∨ ...∨bm(x)

In this case, a candidate x={utah, m400, pc,

ubuntu16-64-ARM} evaluates to true, as a2(x)∧b1(x) = 1.

In the Jacks GUI, the candidates that we generate represent

the UI element (node, link, etc.) that the user has selected

and the actions they may take on it: OS images they may

select, other nodes they may connect it to, etc. Each candi-

date represents a different possible action, and we disable

(“gray out”) UI elements for candidates that do not pass (g(x)
evaluates to false). In the profile instantiation process, the

candidates represent all nodes as they appear in the request,

and the request may only be submitted to clusters for which

all candidates pass ( f (X) evaluates to true).

Checking Constraints Quickly The set of candidates can,

in practice, be quite large: in Jacks, it grows with the number

of options the user can set on the node (including other nodes

to connect to), and in the instantiation process, it grows with

the size of the request. We have run containerized experiments

with as many as 5,000 nodes. At least one candidate must be

evaluated per node in a topology, and if there are LANs, the

number of candidates is quadratic in the number of nodes in

each LAN. The number of conditions in each group can grow

even larger, as it depends in part on the product of the number

of hardware types, images, sites, and other node properties.

On our current system, every candidate is evaluated against

at least 10,000 conditions across all groups. However, the

number of groups remains small in all cases (the current

number of groups in our testbed is just 7), and in practice,

there are several optimizations that allow us to take advantage

of the facility environment to make checks fast.

Large requests have many nodes and thus require many

candidates to be tested, but many of these candidates will

likely be identical. Similarly, when Jacks evaluates which

items in a drop-down box are valid, there is no need to re-

evaluate combinations that have already been tested on a

previous drop-down box instance. Memoizing test results and

culling identical candidates yields large speed improvements

for our use cases. Even with memoization, every unique

candidate has to be checked once, so we have optimized

the evaluation of the Boolean expression as well. Naı̈vely

testing each condition in turn using set arithmetic yields a

speed that is linear on the number of conditions. Instead,

we can uniquely encode conditions as entries in hash tables,

and each group can be tested with an (amortized) constant-

time lookup. This lookup means that testing a candidate

for the first time is linear in the number of groups rather

than the much larger number of conditions across all groups.

Together, these optimizations reduce the complexity of the

checks from O(c ·g · s) (where c is the number of candidates,

g is the number of groups, and s is the size of each group) to

O(unique(c) ·g).

Impact on User Workflow CloudLab’s topology con-

straint system is built around the idea of using a quantitative

advantage (fast constraint checking) to provide a qualitative

improvement in user experience. It has done so by dramati-

cally reducing the number of submitted requests that could

not possibly map—even if all resources on the testbed were

available. In many situations, builders of IaaS-type facilities

face a choice: to ensure that any request that a user makes for

any set of resources configured in any way can be instanti-

ated on the facility, or to constrain user requests in some way.

While the former is attractive, it can be expensive to guarantee

and can result in situations where users can request certain

combinations but would be better off not doing so because

these combinations do not perform well together. Cloud-

Lab’s topology constraint system shows one possible path

forward on the latter alternative: constrain users’ requests,

and give them early, interactive feedback while they design

their configurations.

3.3 Reserving Resources

Until recently, resource allocation in CloudLab was done

in a First-Come-First-Served (FCFS) manner. While FCFS

works well for the interactive “code, compile, debug, gather

results” workflow used in the systems research community,

it has a number of shortcomings: it favors small experiments



(whatever fits into the available resources at the time the user

is active), it can be difficult to plan for deadlines (such as

the paper and class deadlines seen in Section 2.3), and it can

be problematic for events that must occur at a specific time

(such as tutorials and demonstrations). In response to these

competing needs, we have developed a reservation system

to support these use cases while continuing to support the

dominant FCFS model.

A reservation is not an experiment scheduled to run at a

specific time, but a guarantee of available resources at that

time. This allows users to run many experiments either in

series (e.g., to test different scenarios) or in parallel (e.g., one

experiment per student in a class). This loose experiment-

reservation coupling is one of the key design attributes of our

reservation system and the subject of much of the analysis

presented in this section.

What we found in designing our reservation system was

that it needed to have a fundamentally different design than

the resource mapping described in Section 3.1. Resource map-

ping answers the question, “Given a specific request and a set

of available resources, which ones should we use?” The reser-

vation system needs to answer “Given the current schedule

of experiments and reservations, would a given action (creat-

ing a new experiment, extending an existing one, or creating

a new reservation) violate that schedule?” Answering this

question must be fast: like the constraint system, we need the

reservation system to run at interactive speeds so that we can

give users immediate feedback about their ability to create

or extend experiments. Our other challenge is to support late

binding of resources: the reservation system should promise

some set of resources in the future, but should wait until the

time comes to select specific ones.

Our approach diverges from the scheduling schemes of-

fered by other facilities. On Chameleon [21], users request

specific servers (using server IDs) as mentioned previously;

therefore, their requests require only the early binding, and

the system trades flexibility for simplicity (presumably at the

expense of utilization). In contrast, clouds do not offer control

over future scheduling decisions. They provide an illusion of

infinite resources, and handle all user requests interactively,

at the time of submission. In High Performance Computing,

solutions are built upon job queues where job and user priori-

ties impact scheduling, yet making sure that exact deadlines

are met in the future is a constant challenge.

We describe our design using the following terms and op-

erations: A request for reservation r asks for Nr nodes of the

specified hardware type hr to be available within the time

window [sr,er]. Once submit-ed, a request typically requires

approval from CloudLab staff, though small requests are auto-

approved. In addition to the approve operation, staff can

delete reservations, both pending and active. At any time,

users can change their experimentation plans and delete

their reservations or submit modified requests.

Late Binding Considering that CloudLab’s hardware is ho-

mogeneous within each hardware type h, the reservation sys-

tem does not need to decide which specific nodes will be

counted as Nr nodes of type hr ∈ {h}: any Nr such nodes will

satisfy the needs of reservation r with these parameters. This

increases efficiency of resource use and helps accommodate

FCFS users: it does not require us to force experiments out

just because the specific nodes they have allocated happen to

be reserved. As long as there are enough free nodes for ev-

eryone who has requested them, all experiments can continue.

Therefore, we spare the reservation system the task of finding

exact mappings between reservations and specific nodes and

implement reservation operations as node counting tasks. The

“binding” occurs later, when the user instantiates their exper-

iment(s) near or within the [sr,er] window. The reservation

system simply ensures that the capacity is sufficient.

Checking Reservations Quickly Given the data about ac-

tive experiments—node counts and their current expiration

times—and parameters of approved upcoming reservations,

our reservation system constructs a tentative schedule describ-

ing how the number of available nodes is expected to change

over time. This schedule can be constructed in O(n logn)
time (it must sort upcoming events by time), and takes O(n)
time to check. Here, n is the number of events, which is

a sum of the number of current experiments (typically hun-

dreds) and the number of future reservations (typically tens).

Effectively, this creates a two-phase process, in which the

reservation phase involves tasks that are lightweight and fast,

while the laborious resource mapping phase runs as part of

lengthy resource provisioning process.

This fast checking is enabled by a key design decision:

reservations are per hardware type—we do not allow reserva-

tions for broader categories such as “any server type.” While

the latter would be attractive, it would also raise the time to

check the schedule far above O(n). In our design, we can

check the schedule for each type independently because the

sets of nodes of each type do not overlap. There is only one,

binary solution at each point in the schedule: either the sum

of nodes in experiments plus the reservations exceeds the

total number of nodes of that type, or it does not. If we were

to have overlapping sets (e.g., specific and generic types),

this would create dependencies both between sets and across

time. Each point in the schedule would have multiple poten-

tial solutions, using different numbers of nodes from each

node set. Checking the solution would not only be a matter

of checking the solution at each point in time, but ensuring

each solution is consistent with the solutions at other time

points. The combinatorial complexity that this would entail

would prevent us from quickly re-calculating and checking

schedules, so we accepted the tradeoff of being more rigid

with respect to node types.

Enforcing Reservations The CloudLab reservation system

essentially works by “accumulating” free nodes up to the







that month were used through reservations. During the pre-

ceding January, a lighter month, these numbers were 67k,

552k, and 12%, respectively. Another place where the effects

of the reservation system appear is Table 2: if we look at

the entire time period, simple resource unavailability is the

top reason for mapping failures. If we look at just the last

year, however, when the reservation system was more stable,

better advertised, and more heavily used, node shortages due

to upcoming reservations have become more common than

“simple” shortages. The April spike was followed by a similar

increase in usage in September 2018.

We postulate that, as the use of the testbed approaches its

total capacity, (or, as the free resources approach zero), the

notional value of a reservation to a user grows super-linearly.

By analogy to queuing theory, as the demand rate approaches

the service rate, the expected wait time approaches infin-

ity [20]. Facing the possibility that they may have to wait

an unbounded amount of time for the resources they need to

become available through the FCFS system, users have far

greater incentive to submit reservation requests. This results

in the pattern that holds true for the aggregate and also spe-

cific hardware types. The demand for specific types of nodes

fluctuates over time, and users naturally adjust, using reserva-

tions only for the types that are in high demand. Overall, our

analysis confirms that the reservation system constitutes a suc-

cessful “social engineering” project on the part of CloudLab

in that the system did change user behavior in the desired way:

they use reservations heavily during periods of high demand,

but then reservations “fade into the background” when they

are not needed, letting the traditional FCFS model dominate.

4 Related Work

There is a body of literature focused on design and analysis

of computing testbeds. The work that has shaped the research

in this area includes the studies of large-scale experimen-

tation environments such as PlanetLab [8], Grid’5000 [6],

Emulab [16], Open Cirrus [5], and PRObE [12]. There are

also recent studies that examine the Jetstream [33] “pro-

duction” cloud for science and engineering research, the

Chameleon [21] cloud computing testbed, and the Comet [34]

supercomputer, among other facilities. These facility studies

describe specific needs of research communities, document

major design and implementation efforts, and share the unique

lessons learned in the process of deploying and operating each

system. Our work complements them by describing different

aspects of facility operations and yielding insights into differ-

ent kinds of design decisions. Studies of relevant commercial

installations with similar amounts of detail are scarce.

Another relevant theme relates to using academic and com-

mercial cyberinfrastructures to investigate systems topics and

solutions with broad applicability, including the topological

issues in testbeds [15], performance and repeatability [26, 22],

failure analysis [24], individual subsystems such as disk imag-

ing [19, 4] monitoring infrastructure [38], virtualization [16],

and cloud federation [13], among others. Our study comple-

ments these by focusing on the way that the control framework

(the software that manages, assigns, and provisions resources),

and the abstractions it offers affect user experience and be-

havior. The key difference from the related work lies in the

unique facility- and user-centered scope of our analysis; none

of aforementioned facilities has been studied from this angle.

Additionally, this paper describes CloudLab’s functionality

that extends the control framework used in GENI [25, 32],

Emulab [39], and Apt [32].

5 Conclusion

Testbeds for computer science research occupy a unique place

in the overall landscape of computing infrastructure. They

are often used in an attempt to overcome a basic impasse [3]:

as computing technologies become popular, research into

their fundamentals becomes simultaneously more valuable

and more difficult to do. The existence of production systems

such as the Internet and commercial clouds motivates work

aimed at improving them, but production deployments offer

service at a specific layer of abstraction, making it difficult or

impossible to use them for research that seeks to work under

that layer or to change the abstraction significantly.

The design and operation of testbeds—and other IaaS

infrastructures—benefits greatly from analyzing data about

how these facilities are used. In this paper, we have pre-

sented new analysis of the way that one particular facility,

CloudLab, is used in practice. This analysis, and the under-

lying dataset (which we have made public) have shown that

user behavior is highly variable, bursty, and long-tailed. In

addition, algorithms that may be thought of as being “deep

within” the system have large, visible effects on user expe-

rience and on user behavior. Together, these findings point

towards design decisions that more carefully take user expec-

tations and behavior into account “end-to-end” throughout

the entire facility.

Data and Code

Data and code used for our analyses are available at https://

gitlab.flux.utah.edu/emulab/cloudlab-usage with

the tag atc19. This data covers CloudLab’s resource avail-

ability and events such as experiment instantiations.
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